High Accuracy Fundamental Matrix Computation and Its Performance Evaluation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Accuracy Fundamental Matrix Computation and Its Performance Evaluation

We compare the convergence performance of different numerical schemes for computing the fundamental matrix from point correspondences over two images. First, we state the problem and the associated KCR lower bound. Then, we describe the algorithms of three well-known methods: FNS, HEIV, and renormalization, to which we add Gauss-Newton iterations. For initial values, we test random choice, leas...

متن کامل

Highest Accuracy Fundamental Matrix Computation

We compare algorithms for fundamental matrix computation, which we classify into “a posteriori correction”, “internal access”, and “external access”. Doing experimental comparison, we show that the 7-parameter Levenberg-Marquardt (LM) search and the extended FNS (EFNS) exhibit the best performance and that additional bundle adjustment does not increase the accuracy to any noticeable degree.

متن کامل

High Accuracy Computation of Rank-Constrained Fundamental Matrix

A new method is presented for computing the fundamental matrix from point correspondences: its singular value decomposition (SVD) is optimized by the Levenberg-Marquard (LM) method. The search is initialized by optimal correction of unconstrained ML. There is no need for tentative 3-D reconstruction. The accuracy achieves the theoretical bound (the KCR lower bound).

متن کامل

Compact Fundamental Matrix Computation

A very compact algorithm is presented for fundamental matrix computation from point correspondences over two images. The computation is based on the strict maximum likelihood (ML) principle, minimizing the reprojection error. The rank constraint is incorporated by the EFNS procedure. Although our algorithm produces the same solution as all existing ML-based methods, it is probably the most prac...

متن کامل

High Accuracy Computation of Rank-constrained Fundamental Matrix by Efficient Search

High Accuracy Computation of Rank-constrained Fundamental Matrix by Efficient Search Yasuyuki SUGAYA† and Kenichi KANATANI†† † Department of Information and Computer Sciences, Toyohashi University of Technology, Toyohashi, Aichi, 441–8580 Japan †† Department of Computer Science, Okayama University, Okayama, 700–8530 Japan E-mail: †[email protected], ††[email protected] Abs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEICE Transactions on Information and Systems

سال: 2007

ISSN: 0916-8532,1745-1361

DOI: 10.1093/ietisy/e90-d.2.579